INSIGHTS INTO POTENTIAL PCV EFFECTS ON PNEUMOCOCCAL LINEAGES USING WHOLE GENOME SEQUENCING.

BACKGROUND

Using the Global Pneumococcal Sequencing Project database of pneumococcal whole genome sequences collected prior to any pneumococcal conjugate vaccine (PCV) introduction we aimed to identify how pneumococcal lineages might be affected by PCV introduction.

METHODS

DNA from 7,596 pneumococcal isolates, comprising 2,512 carriage, 4,815 invasive, and 269 isolates from other sources, underwent whole-genome-sequencing on the Wellcome Trust Sanger Institute core sequencing pipeline.

Lineages were defined by clustering genomes on sequence similarity using hierBAPS. Simpson’s index of serotype diversity (a value between 0 and 1) for each lineage was calculated, with higher values indicating greater diversity.

RESULTS

45 pneumococcal lineages were identified.

Two monophyletic lineages which were represented entirely by serotype 1 and serotype 5 isolates respectively (Simpson’s index of 0) were observed, which would thus be unlikely to escape negative selection following vaccine introduction.

Contrastingly however, three lineages which were comprised of 65/324 (20.1%), 54/157 (34.4%), and 51/183 (27.9%) serotypes included in the PCV13 vaccine, and had Simpson’s indices of 0.83, 0.88, and 0.92 respectively, may be more likely to escape selection as a result of PCV introduction.

CONCLUSIONS

Using whole-genome sequencing of pneumococci collected prior to PCV introduction, it is apparent that a number of lineages which contain PCV serotypes also contain non-vaccine types and may be more capable of progressively escaping selective pressure of PCV introduction in settings where these strains exist.

Further correlation of these data with post-PCV pneumococcal populations may be used to further inform PCV effect on pneumococcal lineages.

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.