Rapid pneumococcal evolution in response to co-trimoxazole prophylaxis in a high-HIV burden population

Stephanie W. Lo1, Nicholas J. Croucher2, Anne von Gottberg2, Rebecca A. Gladstone3, Mignon du Plessis2, Shabir A. Madhi4,5, Susan A. Nzenze6,5, Simon R. Harris1, Mark van der Linden8, Jee-Hoon Song9, Kwan Soo Ko9, Paul Turner8,9, Raquel Sa-Leão10,11, Herminia de Lencastre11,12, Bernard Beall13, Julian Parkhill7, Keith P. Klugman14,15, Lesley McGee16, Robert F. Breiman14,16, Stephen D. Bentley1

1 Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK; 2 Department of Infectious Disease Epidemiology, St. Mary’s Campus, Imperial College London, London, W2 1PG, UK; 3 Respiratory and Meniscal Pathogens Research Unit, National Institute for Communicable Diseases of the National Health Laboratory Service and University of Witswatersrand, Johannesburg 2000, South Africa; 4 Medical Research Council Respiratory and Membranous Pathogens Research Unit, University of the Witswatersrand, Johannesburg 2000; South Africa; 5 Department of Science and Technology/National Research Foundation Vaccine Preventable Diseases, University of the Witswatersrand, Johannesburg 2000, South Africa; 6 Institute for Medical Microbiology, National Reference Center for Streptococci, University Hospital RWTH Aachen, Pauwelsstraat 30, 52074 Aachen, Germany; 7 Samsung Medical Centre, Sungkyunkwan University School of Medicine and Asia Pacific Foundation for Infectious Disease, Seoul, South Korea; 8 Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, South Korea; 9 Cambridge Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia; 10 Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK; 11 Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biotecnologia, Universidade Nova de Lisboa, 2784-505 Caparica, Portugal; 12 Laboratory of Microbiology, The Rockefeller University, New York, New York 10065, USA; 13 Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30322, USA. 14 Hubert Department of Global Health,Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; 15 Centre for Respiratory Diseases and Menin gitis, National Institute for Communicable Diseases, Gauteng, South Africa; 16 Emory Global Health Institute, Emory University, Atlanta, GA 30322, USA

On behalf of all partners of the Global Pneumococcal sequencing project, www.pneumogen.net

Background

• Disease caused by Streptococcus pneumoniae represents a major problem in South Africa, where ~17% (~6 million) of the adult population were HIV positive in 2011 according to the 2012 UNAIDS report.

• In 2000, co-trimoxazole chemoprophylaxis was implemented for HIV-infected individuals in South Africa.

• Prior to PCV introductions, 23F was the forth serotypes causing disease in all ages groups in South Africa, and were associated with resistance to penicillin, tetracycline, and chloramphenicol.

• A sample of 132 serotype 23F invasive isolates between 1989 and 2007 throughout South Africa, revealing two different 23F lineages, PMEN1 and PMEN15, in which PMEN15 was in an increasing trend.

• This study aimed to reconstruct the phylogeny of PMEN15 in South Africa and its rapid response to the widespread use of co-trimoxazole chemoprophylaxis in South Africa.

Methods

Recombination-removed phylogeny with GUBBINS using RAxML, detection of antibiotic resistance determinants with ARIBA. Visualisations with Phandango

Results

A total of 242 serotype 23F invasive isolates between 1989 and 2014 throughout South Africa, revealing PMEN1 was common in the 1990s, but MDR PMEN15 lineage rose in the early 2000s (Mann-Kendall test, p = 2.9 x 10^-6), as PMEN1 disappeared (Fig. 1). There were two major PMEN15 sub-lineages, PMEN15A and PMEN15B (Fig. 2A). Fig. 1 showed the dynamics of PMEN1 and two PMEN15 sub-lineages within South Africa.

This lineage exhibited strong phylogeographic structure (Fig. 2A) and it had entered South Africa twice. High recombination frequency was observed in two resistance determinants, folA and folP, which are associated with co-trimoxazole resistance (Fig. 2C).

Fig. 2 Reconstruction of the evolutionary history of PMEN15. (A) Phylogeny of PMEN15 (B) The columns indicated the wildtype (blue) and mutated (red) folA and folP (C) Plot showing recombination frequency (D) position of the putative recombination events corresponding to the plot.

High-level co-trimoxazole resistance was observed in 68.3% (252/369) of the South African isolates, 60.5% (23/38) in South American isolates, 40.9% (9/22) in European isolates, 25% (12/48) in South Asian isolates. The high prevalence of cotrimoxazole resistance in South African PMEN15 isolates is the consequence of the acquisitions of mutations in folA and folP within PMEN15A and PMEN15B.

Clade PMEN15A isolates with mutations in folA and folP had 3-fold increase in prevalence in 2005 (Fig. 3), which coincides its rise at the same year shown in Fig.1. Mutations in both genes were acquired by multiple independent recombination events (Fig.2D). Clade PMEN15B isolates were all non-susceptible to co-trimoxazole based on the folA and folP genotypes (Fig. 3). It was first detected in 2005 and had four-fold increase in prevalence by 2008 (Fig.1 and Fig.3). A clonal expansion of beta-lactam non-susceptible isolates was observed within this clade (Fig. 2A, asterisked). Unlike PMEN15A, PMEN15B was disseminated throughout the country (Fig. 4).

Conclusions

This study showed a parallel expansion of two sub-lineages that independently acquired co-trimoxazole resistance in South Africa. The rapid evolutionary response of PMEN15 to HIV-associated chemoprophylaxis may contribute to its success.